

A Virtual Environment for Industrial Control Systems: A Nonlinear Use-Case in Attack Detection, Identification, and Response

Andrés F. Murillo

Joint work with Luis F. Cómbita, Andrea Calderón, Sandra Rueda, Álvaro Cárdenas, Nicanor Quijano.

Colombia, 2018

Context

Problem – Attacks to critical infrastructures:

- Critical infrastructures interact with the real world
- Attacks have huge financial, economical, political and even military impact

Credit: Office of the Presidency of the Islamic Republic of Iran

Credit: Steag/VGB Power Tech GmbH, CC BY-SA

Context

We need:

- Environments for testing security of industrial control systems
- Fidelity of testing environments is important

Idea:

 Virtual environments offer a high fidelity environment without the cost associated to physical environments

Proposal:

 Using a virtualized open source platform to test security approaches for Industrial Control Systems (ICS)

Previous work:

Universidad de Ios Andes

 Mininet: light virtualization tool to emulate communication networks (<u>http://mininet.org/</u>)

 Mininet enables to emulate network topologies, in which each host and switch is represented by a container

Virtual Environments for Industrial Control Systems

Previous work:

Iniversidad de os Andes

- MiniCPS: mininet extension that enables the emulation of industrial control systems (<u>https://github.com/scy-phy/minicps</u>)
- MiniCPS emulated plants with very simplistic models
 - MiniCPS does not represent plant-sensor and actuator-plant behavior

Virtual Environments for Industrial Control Systems

Our previous work:

- Virtual Incident Response Functions in Control Systems
- Topology with three control loops
- Emulation of Sensor-PLC-Actuator communication

Plant model was still too simple.

 In such systems is difficult to grasp network impact in security attacks

Virtual Environments for Industrial Control Systems

In this paper,

We extend our previous work by using a non-linear plant for experiments

Basics - ICS Model

Objective:

 Keep the plant at a desired setpoint

Flow:

- 1. Controller receives reading from sensor
- 2. Controller calculates action control
- 3. Controller sends commands to actuators

Basics - ICS Model

Plant is represented by:

 $X_{k+1} = AX_k + Bu_k$ $Y_k = CX_k$

 $X \rightarrow$ Plant State $Y \rightarrow$ Sensor Output

Sensor reading might not represent accurately plant state!

- Malfunction
- Attack

Integrity Attacks

Universidad de

los Andes

- Integrity attacks on ICS networks are akin to malware on traditional IT environment
- In both cases, the message can be authentic and have integrity
 - Payload is designed with deep knowledge of application
 - Payload "tricks" main application to perform desired behavior
- In both cases, defenses require to inspect the packet payload

Integrity Attacks - Defenses

Router SCADA Defenses to this type of a attacks could be applied at different network points PLC IDS at supervisory a) level b) IDS at field level c) IDS integrated into the PLC Valve Pump **Physical Process**

- Also an integrity attack
- A bias attack adds an F value to the original sensor reading

Detection

Anomaly Detection: Unknown Input Observer (UIO)

- Known plant behavior
- Plant behavior must follow physical laws
- Anomaly detection can be performed using physical laws
- If at time k, the systems deviate from expected physical model, an anomaly is detected

Detection

Anomaly Detection: Unknown Input Observer (UIO)

- Plant behavior must follow physical laws
- The residue of the plant without an attack is measured, this is used as a base value
- If at time k, the systems deviate from expected physical model, an anomaly is detected

Anomaly Detection: Unknown Input Observer (UIO)

Response

Setup:

- Mininet MiniCPS
- Physical plant
 - Three tank water plant
 - Python odeint differential equation system solver

Evaluation

Setup:

• Plant equations:

$$\begin{split} S\frac{d}{dt}L_{1}(t) &= Q_{1}(t) - q_{13}(t), \\ S\frac{d}{dt}L_{2}(t) &= Q_{2}(t) + q_{32}(t) - q_{20}(t), \\ S\frac{d}{dt}L_{3}(t) &= q_{13}(t) - q_{32}(t), \\ q_{13}(t) &= \mu_{13}S_{n} \operatorname{sgn}[L_{1}(t) - L_{3}(t)]\sqrt{2g|L_{1}(t) - L_{3}(t)|} \\ q_{32}(t) &= \mu_{32}S_{n} \operatorname{sgn}[L_{3}(t) - L_{2}(t)]\sqrt{2g|L_{3}(t) - L_{2}(t)|} \\ q_{20}(t) &= \mu_{20}S_{n}\sqrt{2gL_{2}(t)}, \end{split}$$

Setup:

- Mininet MiniCPS
- PLC Sensors Actuators
 - Each one a mininet node, running a python script

Bias Attack:

- 1. Time k=200. Attacker starts the attack
- 2. Attack value: 0,02m
- 3. Controller thinks that the plant level is below the desired setpoint and applies the control algorithm
- 4. Attack ends at k=350

Experiment

Bias Attack:

- Other experiments to further test behavior of our defense
- Five experiments
 All of them: with and without defense
 Duration: 500 seconds
 Attacks start at 200 and ends at 350
- Change bias attack from 0,01m to 0,05m
- Calculate mean error between desired behavior and current behavior of the tank

Testbed	Controlled Plant	Industrial Equipment	Network Representation	Considerations
Pipeline virtual testbed	Simulation (Simulink)	Emulation (Open PLC)	Physical	Physical network is difficult to scale
Lancaster	Physical	Physical	Physical	Expensive testbed and difficult to scale
ICS Testbed	Equipment	Equipment	Equipment	
Emulab ICS	Simulation	Simulation	Emulation	Uses proprietary software
Testbed	(Matlab)	(PLC Code)	(Emulab Network)	

- Virtual environments may be used to emulate the behavior of a non-linear plant and a networked control loop (*better scalability*)
- Emulating and controlling a non-linear plant is much more challenging than emulating a linear plant (*more testing setups and more interesting*)
- Unknown Input Observer (UIO) can be used on Networked Industrial Control Systems to protect the plant from harmful behavior (*in the same* way that anti-malware software is used today)

- Extend our virtual environments to consider Real-Time Operating Systems
 - Enables to evaluate real time constrains (RTOSs are actually used in ICS environments)
- Deploy environment in a cloud environment
 - Offers a testbed that more closely resembles a virtualized industrial control system

Thanks Questions and comments are always welcome

Andrés Felipe Murillo Github: <u>https://github.com/afmurillo/</u> <u>af.murillo225@uniandes.edu.co</u>

COMIT Github: <u>https://github.com/ComitUniandes</u> UTD Cy-Phy Security lab: <u>https://github.com/Cyphysecurity</u>